Kaspersky Unified Monitoring and Analysis Platform
- Kaspersky Unified Monitoring and Analysis Platform Help
- About Kaspersky Unified Monitoring and Analysis Platform
- Program architecture
- Program licensing
- About the End User License Agreement
- About the license
- About the License Certificate
- About the license key
- About the key file
- Adding a license key to the program web interface
- Viewing information about an added license key in the program web interface
- Removing a license key in the program web interface
- Administrator's guide
- Installing and removing KUMA
- Program installation requirements
- Ports used by KUMA during installation
- Synchronizing time on servers
- About the inventory file
- Installation on a single server
- Distributed installation
- Distributed installation in a fault-tolerant configuration
- KUMA backup
- Modifying the configuration of KUMA
- Updating previous versions of KUMA
- Troubleshooting update errors
- Delete KUMA
- Working with tenants
- Managing users
- KUMA services
- Services tools
- Service resource sets
- Creating a storage
- Creating a correlator
- Creating a collector
- Predefined collectors
- Creating an agent
- Configuring event sources
- Configuring receipt of Auditd events
- Configuring receipt of KATA/EDR events
- Configuring Kaspersky Security Center event receiving in CEF format
- Configuring receiving Kaspersky Security Center event from MS SQL
- Creating an account in the MS SQL database
- Configuring the SQL Server Browser service
- Creating a secret in KUMA
- Configuring a connector
- Configuring the KUMA Collector for receiving Kaspersky Security Center events from an MS SQL database
- Installing the KUMA Collector for receiving Kaspersky Security Center events from the MS SQL database
- Configuring receipt of events from Windows devices using KUMA Agent (WEC)
- Configuring audit of events from Windows devices
- Configuring centralized receipt of events from Windows devices using the Windows Event Collector service
- Granting permissions to view Windows events
- Granting permissions to log on as a service
- Configuring the KUMA Collector for receiving events from Windows devices
- Installing the KUMA Collector for receiving events from Windows devices
- Configuring forwarding of events from Windows devices to KUMA using KUMA Agent (WEC)
- Configuring receipt of events from Windows devices using KUMA Agent (WMI)
- Configuring receipt of PostgreSQL events
- Configuring receipt of IVK Kolchuga-K events
- Configuring receipt of CryptoPro NGate events
- Configuring receipt of Ideco UTM events
- Configuring receipt of KWTS events
- Configuring receipt of KLMS events
- Configuring receipt of KSMG events
- Configuring receipt of PT NAD events
- Configuring receipt of events using the MariaDB Audit Plugin
- Configuring receipt of Apache Cassandra events
- Configuring receipt of FreeIPA events
- Configuring receipt of VipNet TIAS events
- Configuring receipt of Sendmail events
- Configuring receipt of Nextcloud events
- Configuring receipt of Snort events
- Configuring receipt of Suricata events
- Configuring receipt of FreeRADIUS events
- Configuring receipt of zVirt events
- Configuring receipt of Zeek IDS events
- Monitoring event sources
- Managing assets
- Adding an asset category
- Configuring the table of assets
- Searching assets
- Exporting asset data
- Viewing asset details
- Adding assets
- Assigning a category to an asset
- Editing the parameters of assets
- Deleting assets
- Updating third-party applications and fixing vulnerabilities on Kaspersky Security Center assets
- Moving assets to a selected administration group
- Asset audit
- Custom asset fields
- Critical information infrastructure assets
- Integration with other solutions
- Integration with Kaspersky Security Center
- Configuring Kaspersky Security Center integration settings
- Adding a tenant to the list for Kaspersky Security Center integration
- Creating Kaspersky Security Center connection
- Editing Kaspersky Security Center connection
- Deleting Kaspersky Security Center connection
- Importing events from the Kaspersky Security Center database
- Kaspersky Endpoint Detection and Response integration
- Integration with Kaspersky CyberTrace
- Integration with Kaspersky Threat Intelligence Portal
- Integration with R-Vision Security Orchestration, Automation and Response
- Integration with Active Directory, Active Directory Federation Services and FreeIPA
- Connecting over LDAP
- Enabling and disabling LDAP integration
- Adding a tenant to the LDAP server integration list
- Creating an LDAP server connection
- Creating a copy of an LDAP server connection
- Changing an LDAP server connection
- Changing the data update frequency
- Changing the data storage period
- Starting account data update tasks
- Deleting an LDAP server connection
- Authentication using domain accounts
- Connecting over LDAP
- RuCERT integration
- Integration with Security Vision Incident Response Platform
- Kaspersky Industrial CyberSecurity for Networks integration
- Kaspersky Automated Security Awareness Platform
- Sending notifications to Telegram
- UserGate integration
- Integration with Kaspersky Web Traffic Security
- Integration with Kaspersky Secure Mail Gateway
- Importing asset information from RedCheck
- Integration with Kaspersky Security Center
- Managing KUMA
- Working in hierarchy mode
- Working with geographic data
- Installing and removing KUMA
- User guide
- KUMA resources
- Operations with resources
- Destinations
- Working with events
- Filtering and searching events
- Selecting Storage
- Generating an SQL query using a builder
- Manually creating an SQL query
- Filtering events by period
- Displaying names instead of IDs
- Presets
- Limiting the complexity of queries in alert investigation mode
- Saving and selecting events filter configuration
- Deleting event filter configurations
- Supported ClickHouse functions
- Viewing event detail areas
- Exporting events
- Configuring the table of events
- Refreshing events table
- Getting events table statistics
- Viewing correlation event details
- Filtering and searching events
- Normalizers
- Aggregation rules
- Enrichment rules
- Correlation rules
- Filters
- Active lists
- Viewing the table of active lists
- Adding active list
- Viewing the settings of an active list
- Changing the settings of an active list
- Duplicating the settings of an active list
- Deleting an active list
- Viewing records in the active list
- Searching for records in the active list
- Adding a record to an active list
- Duplicating records in the active list
- Changing a record in the active list
- Deleting records from the active list
- Import data to an active list
- Exporting data from the active list
- Predefined active lists
- Dictionaries
- Response rules
- Notification templates
- Connectors
- Secrets
- Segmentation rules
- Example of incident investigation with KUMA
- Incident conditions
- Step 1. Preliminary steps
- Step 2. Assigning an alert to a user
- Step 3. Check if the triggered correlation rule matches the data of the alert events
- Step 4. Analyzing alert information
- Step 5. False positive check
- Step 6. Determining alert severity
- Step 7. Incident creation
- Step 8. Investigation
- Step 9. Searching for related assets
- Step 10. Searching for related events
- Step 11. Recording the causes of the incident
- Step 12. Incident response
- Step 13. Restoring assets operability
- Step 14. Closing the incident
- Analytics
- Dashboard
- Reports
- Widgets
- Working with alerts
- Working with incidents
- About the incidents table
- Saving and selecting incident filter configuration
- Deleting incident filter configurations
- Viewing information about an incident
- Incident creation
- Incident processing
- Changing incidents
- Automatic linking of alerts to incidents
- Categories and types of incidents
- Interaction with RuCERT
- Special consideration for successful export from the KUMA hierarchical structure to RuCERT
- Exporting data to RuCERT
- Supplementing incident data on request
- Sending files to RuCERT
- Sending incidents involving personal information leaks to RuCERT
- Communication with RuCERT experts
- Supported categories and types of RuCERT incidents
- Notifications about the incident status change in RuCERT
- Retroscan
- KUMA resources
- Contacting Technical Support
- REST API
- Creating a token
- Configuring permissions to access the API
- Authorizing API requests
- Standard error
- Operations
- Viewing a list of active lists on the correlator
- Import entries to an active list
- Searching alerts
- Closing alerts
- Searching assets
- Importing assets
- Deleting assets
- Searching events
- Viewing information about the cluster
- Resource search
- Loading resource file
- Viewing the contents of a resource file
- Importing resources
- Exporting resources
- Downloading the resource file
- Search for services
- Tenant search
- View token bearer information
- Dictionary updating in services
- Dictionary retrieval
- Viewing custom fields of the assets
- Creating a backup of the KUMA Core
- Restoring the KUMA Core from the backup
- Appendices
- Commands for components manual starting and installing
- Integrity check of KUMA files
- Normalized event data model
- Alert data model
- Asset data model
- User account data model
- KUMA audit events
- Event fields with general information
- User was successfully signed in or failed to sign in
- User login successfully changed
- User role was successfully changed
- Other data of the user was successfully changed
- User successfully logged out
- User password was successfully changed
- User was successfully created
- User role was successfully assigned
- User role was successfully revoked
- User access token was successfully changed
- Service was successfully created
- Service was successfully deleted
- Service was successfully reloaded
- Service was successfully restarted
- Service was successfully started
- Service was successfully paired
- Service status was changed
- Storage partition was deleted by user
- Storage partition was deleted automatically due to expiration
- Active list was successfully cleared or operation failed
- Active list item was successfully changed, or operation was unsuccessful
- Active list item was successfully deleted or operation was unsuccessful
- Active list was successfully imported or operation failed
- Active list was exported successfully
- Resource was successfully added
- Resource was successfully deleted
- Resource was successfully updated
- Asset was successfully created
- Asset was successfully deleted
- Asset category was successfully added
- Asset category was deleted successfully
- Settings were updated successfully
- Tenant was successfully created
- Tenant was successfully enabled
- Tenant was successfully disabled
- Other tenant data was successfully changed
- Updated data retention policy after changing drives
- The dictionary was successfully updated on the service or operation was unsuccessful
- Response in Active Directory
- Response via KICS for Networks
- Kaspersky Automated Security Awareness Platform response
- KEDR response
- Correlation rules
- Sending test events to KUMA
- Information about third-party code
- Trademark notices
- Glossary
nats-jetstream type
When creating this type of connector, you need to define values for the following settings:
Basic settings tab:
- Name (required)—a unique name for this type of resource. Must contain 1 to 128 Unicode characters.
- Tenant (required)—name of the tenant that owns the resource.
- Type (required)—connector type, nats-jetstream.
- URL (required)—URL that you need to connect to.
- Topic (required)—the topic for NATS messages. Must contain Unicode characters.
- Delimiter is used to specify a character representing the delimiter between events. Available values:
\n
,\t
,\0
. If no separator is specified (an empty value is selected), events are not separated. - Description—resource description: up to 4,000 Unicode characters.
Advanced settings tab:
- Buffer size is used to set a buffer size for the connector. The default value is 16 KB, and the maximum value is 64 KB.
- GroupID—the GroupID parameter for NATS messages. Must contain 1 to 255 Unicode characters. The default value is
default
. - Workers—used to set worker count for the connector. The default value is 1.
- Character encoding setting specifies character encoding. The default value is
UTF-8
. - Cluster ID is the ID of the NATS cluster.
- TLS mode specifies whether TLS encryption is used:
- Disabled (default)—do not use TLS encryption.
- Enabled—use encryption without certificate verification.
- With verification—use encryption with verification that the certificate was signed with the KUMA root certificate. The root certificate and key of KUMA are created automatically during program installation and are stored on the KUMA Core server in the folder /opt/kaspersky/kuma/core/certificates/.
- Custom CA—use encryption with verification that the certificate was signed by a Certificate Authority. The secret containing the certificate is selected from the Custom CA drop-down list, which is displayed when this option is selected.
Creating a certificate signed by a Certificate Authority
To use this TLS mode, you must do the following on the KUMA Core server (OpenSSL commands are used in the examples below):
- Create the key that will be used by the Certificate Authority.
Example command:
openssl genrsa -out ca.key 2048
- Generate a certificate for the key that was just created.
Example command:
openssl req -new -x509 -days 365 -key ca.key -subj "/CN=<common host name of Certificate Authority>" -out ca.crt
- Create a private key and a request to have it signed by the Certificate Authority.
Example command:
openssl req -newkey rsa:2048 -nodes -keyout server.key -subj "/CN=<common host name of KUMA server>" -out server.csr
- Create a certificate signed by the Certificate Authority. The subjectAltName must include the domain names or IP addresses of the server for which the certificate is being created.
Example command:
openssl x509 -req -extfile <(printf "subjectAltName=DNS:domain1.ru,DNS:domain2.com,IP:192.168.0.1") -days 365 -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out server.crt
- The obtained
server.crt
certificate should be uploaded in the KUMA web interface as a certificate-type secret, which should then be selected from the Custom CA drop-down list.
When using TLS, it is impossible to specify an IP address as a URL.
To use KUMA certificates on third-party devices, you must change the certificate file extension from CERT to CRT. Otherwise, error x509: certificate signed by unknown authority may be returned.
- Create the key that will be used by the Certificate Authority.
- Compression—you can use Snappy compression. By default, compression is disabled.
- Debug—a drop-down list where you can specify whether resource logging should be enabled. By default it is Disabled.