Изменение нейросетевого элемента ML-модели
Вы можете изменить параметры нейросетевого элемента ML-модели.
Изменение элементов ML-моделей доступно системным администраторам и пользователям с правом Изменение черновиков моделей из группы прав Управление ML-моделями.
Чтобы изменить нейросетевой элемент ML-модели:
- В основном меню выберите раздел Модели.
- В дереве активов выберите нейросетевой элемент, который вы хотите изменить.
Справа отобразится список параметров.
- В правом верхнем углу окна нажмите на кнопку Изменить.
- В поле Название укажите новое название элемента ML-модели.
- В поле Описание укажите новое описание ML-модели.
- Если требуется, в блоке параметров Общие параметры элемента выполните следующие действия:
- В поле Период напоминания (сек.) укажите период в секундах, при достижении которого ML-модель сгенерирует повторный инцидент при сохранении аномального поведения в каждом узле РИВС.
По умолчанию этот параметр имеет значение
0
, что соответствует отсутствию напоминаний. - В поле Период подавления повторных срабатываний (сек.) укажите период в секундах, в течение которого ML-модель не регистрирует повторные инциденты от одного и того же элемента.
По умолчанию этот параметр имеет значение
0
(повторные инциденты не подавляются). - В поле Шаг сетки (сек.) укажите период РИВС для элемента в секундах в виде десятичной дроби.
- В раскрывающемся списке Статус инцидента выберите статус инцидента, который будет автоматически присвоен инцидентам, зарегистрированным элементом ML-модели.
- В раскрывающемся списке Причина инцидента выберите причину инцидента, которая будет автоматически задана для инцидентов, зарегистрированных элементом ML-модели.
- В поле Цвет точек-индикаторов инцидентов выберите цвет точек-индикаторов инцидентов, зарегистрированных элементом ML-модели, на графиках в разделах Мониторинг и История.
- В поле Порог регистрации инцидентов укажите пороговое значение ошибки предсказания, при достижении которого происходит регистрация инцидента.
- В поле Экспертное заключение укажите экспертное заключение, которое будет автоматически создано для инцидентов, зарегистрированных элементом ML-модели.
- В поле Период напоминания (сек.) укажите период в секундах, при достижении которого ML-модель сгенерирует повторный инцидент при сохранении аномального поведения в каждом узле РИВС.
- Если требуется, измените архитектуру нейросетевого элемента.
Kaspersky MLAD поддерживает следующие архитектуры нейросетевого элемента ML-модели: Dense, RNN, CNN, TCN или Transformer.
- Если требуется изменить параметры архитектуры нейросетевого элемента, а также степенной показатель и значение сглаживания суммарной ошибки предсказания, включите Расширенные параметры нейронной сети с помощью переключателя.
- Если требуется, в блоке параметров Основные параметры выполните следующие действия:
- В раскрывающемся списке Входные теги выберите один или несколько тегов, которые служат исходными данными для предсказания значений выходных тегов.
- В раскрывающемся списке Выходные теги выберите один или несколько тегов, поведение которых предсказывается элементом модели.
- Если включен режим расширенной настройки, в поле Степенной показатель MSE укажите степенной показатель суммарной ошибки предсказания в виде десятичной дроби.
- Если включен режим расширенной настройки, в поле Степень сглаживания укажите значение сглаживания суммарной ошибки предсказания в виде десятичной дроби.
- В раскрывающемся списке Входные теги выберите один или несколько тегов, которые служат исходными данными для предсказания значений выходных тегов.
- Если требуется, в блоке параметров Параметры окон выполните следующие действия:
- В поле Входное окно (шаги) укажите размер окна для входных значений, на основе которых элемент ML-модели предсказывает выходные значения.
- В поле Смещение выходного окна укажите количество шагов, на которое начало выходного окна будет смещено относительно начала входного окна.
- В поле Выходное окно (шаги) укажите длину предсказания выходных тегов, вычисляемого на основании входных тегов на входном окне.
- Если вы выбрали нейросетевой элемент с Dense-архитектурой, выполните следующие действия:
- В поле Множители для вычисления количества нейронов на слоях укажите через запятую без пробелов множители, при умножении которых на количество входных тегов будет рассчитано количество нейронов на каждом слое элемента ML-модели.
- В поле Функции активации на слоях укажите одну из следующих функций активации на каждом слое элемента ML-модели через запятую без пробелов:
relu
– нелинейная функция активации, которая преобразует входное значение в значение от0
до положительной бесконечности.selu
– монотонно возрастающая функция, которая включает нормализацию, основанную на центральной предельной теореме.linear
– линейная функция, представляющая собой прямую линию и пропорциональная входным данным.sigmoid
– нелинейная функция, которая преобразует входные значения в значения от0
до1
.tanh
– функция гиперболического тангенса, которая преобразует входные значения в значения от-1
до1
.softmax
– функция для преобразования вектора значений в вероятностное распределение, которое суммируется до1
.
По умолчанию этот параметр имеет значение
relu,relu,relu
.
- Если вы добавляете нейросетевой элемент с RNN-архитектурой, выполните следующие действия:
- В поле Количество GRU-нейронов на слоях укажите количество GRU-нейронов на слоях через запятую без пробелов.
По умолчанию этот параметр имеет значение
40,40
. - В поле Количество распределенных по времени нейронов на слоях декодирующего блока укажите количество нейронов, распределенных по времени на слоях декодирующего блока через запятую без пробелов.
По умолчанию этот параметр имеет значение
40,20
.
- В поле Количество GRU-нейронов на слоях укажите количество GRU-нейронов на слоях через запятую без пробелов.
- Если вы выбрали нейросетевой элемент с CNN-архитектурой, в блоке параметров Параметры архитектуры CNN выполните следующие действия:
- В поле Размер фильтров на слоях укажите размер фильтров для каждого слоя элемента через запятую без пробелов.
По умолчанию этот параметр имеет значение
2,2,2
. - В поле Количество фильтров на слоях укажите количество фильтров для каждого слоя элемента ML-модели через запятую без пробелов.
По умолчанию этот параметр имеет значение
50,50,50
. - В поле Размер окна выборки максимума (MaxPooling) укажите размер окна выборки максимального значения через запятую без пробелов.
По умолчанию этот параметр имеет значение
2,2,2
. - В поле Количество нейронов на слоях декодирующего блока укажите количество нейронов на слоях декодирующего блока.
- В поле Размер фильтров на слоях укажите размер фильтров для каждого слоя элемента через запятую без пробелов.
- Если вы выбрали нейросетевой элемент с TCN-архитектурой, выполните следующие действия:
- В поле Регуляризация укажите коэффициент регуляризации в виде десятичной дроби для предотвращения переобучения элемента ML-модели.
По умолчанию этот параметр имеет значение
0.1
. - В поле Размер фильтров укажите размеров фильтров элемента ML-модели.
По умолчанию этот параметр имеет значение
2
. - В поле Расширения на слоях (dilations) укажите экспоненциальные значения расширения выходных данных на слоях через запятую без пробелов.
По умолчанию этот параметр имеет значение
1,2,4
. - В раскрывающемся списке Функция активации выберите одну из следующих функций активации:
- linear – линейная функция активации, результат которой пропорционален входному значению.
- relu – нелинейная функция активации, которая преобразует входное значение в значение от нуля до положительной бесконечности. Если входное значение меньше или равно нулю, функция возвращает значение ноль, иначе функция возвращает входное значение.
По умолчанию этот параметр имеет значение linear.
- В поле Количество кодирующих блоков укажите количество кодирующих блоков.
По умолчанию этот параметр имеет значение
1
. - В поле Тип слоя перед выходным выберите один из следующих типов слоя, предшествующего выходному слою:
- TimeDistributedDense (по умолчанию) – слой с полносвязной архитектурой.
- GRU – слой с рекуррентной архитектурой.
- В поле Регуляризация укажите коэффициент регуляризации в виде десятичной дроби для предотвращения переобучения элемента ML-модели.
- Если вы выбрали нейросетевой элемент с Transformer-архитектурой, выполните следующие действия:
- В поле Регуляризация в кодирующем блоке укажите коэффициент регуляризации в кодирующем блоке в виде десятичной дроби.
По умолчанию этот параметр имеет значение
0.01
. - В поле Количество голов внимания укажите количество голов внимания (англ. attention heads).
По умолчанию этот параметр имеет значение
1
. - В поле Количество кодирующих блоков укажите количество кодирующих блоков.
По умолчанию этот параметр имеет значение
1
. - В поле Множители для вычисления количества нейронов на слоях укажите через запятую без пробелов множители, при умножении которых на количество входных тегов будет рассчитано количество нейронов на слоях декодирующего блока.
- В поле Регуляризация в кодирующем блоке укажите коэффициент регуляризации в кодирующем блоке в виде десятичной дроби.
- В правом верхнем углу окна нажмите на кнопку Сохранить.